Combining Precision Boosting with LP Iterative Refinement for Exact Linear Optimization

This article studies a combination of the two state-of-the-art algorithms for the exact solution of linear programs (LPs) over the rational numbers, i.e., without any roundoff errors or numerical tolerances. By integrating the method of precision boosting inside an LP iterative refinement loop, the combined algorithm is able to leverage the strengths of both methods: … Read more

Linear Programming using Limited-Precision Oracles

Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that calculations are performed exactly and bounds are derived on the number of elementary arithmetic operations necessary, or the cost of all arithmetic operations … Read more

Efficient high-precision dense matrix algebra on parallel architectures for nonlinear discrete optimization

We provide a proof point for the idea that matrix-based algorithms for discrete optimization problems, mainly conceived for proving theoretical efficiency, can be easily and efficiently implemented on massively-parallel architectures by exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision dense linear algebra. We have successfully implemented our algorithm on the Blue Gene/L … Read more