Semidefinite programming by Projective Cutting-Planes

\(\) Seeking tighter relaxations of combinatorial optimization problems, semidefinite programming is a generalization of linear programming that offers better bounds and is still polynomially solvable. Yet, in practice, a semidefinite program is still significantly harder to solve than a similar-size Linear Program (LP). It is well-known that a semidefinite program can be written as an … Read more

Numerical estimation of the relative entropy of entanglement

We propose a practical algorithm for the calculation of the relative entropy of entanglement(REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semi-definite cutting plane approach. In low dimensions the implementation of the algorithm in MATLAB provides an … Read more