Exact and Approximation Algorithms for Sparse PCA
Sparse Principal Component Analysis (SPCA) is designed to enhance the interpretability of traditional Principal Component Analysis (PCA) by optimally selecting a subset of features that comprise the first principal component. Given the NP-hard nature of SPCA, most current approaches resort to approximate solutions, typically achieved through tractable semidefinite programs (SDPs) or heuristic methods. To solve SPCA to … Read more