The Augmented Factorization Bound for Maximum-Entropy Sampling
The maximum-entropy sampling problem (MESP) aims to select the most informative principal submatrix of a prespecified size from a given covariance matrix. This paper proposes an augmented factorization bound for MESP based on concave relaxation. By leveraging majorization and Schur-concavity theory, we demonstrate that this new bound dominates the classic factorization bound of Nikolov (2015) and a recent … Read more