On the power of linear programming for K-means clustering

In a previous work, we introduced a new linear programming (LP) relaxation for K-means clustering. In this paper, we further investigate the theoretical properties of this relaxation. We focus on K-means clustering with two clusters, which is an NP-hard problem. As evident from our numerical experiments with both synthetic and real-world data sets, the proposed … Read more

Rank-one Boolean tensor factorization and the multilinear polytope

We consider the NP-hard problem of approximating a tensor with binary entries by a rank-one tensor, referred to as rank-one Boolean tensor factorization problem. We formulate this problem, in an extended space of variables, as the problem of minimizing a linear function over a highly structured multilinear set. Leveraging on our prior results regarding the … Read more

The Gap Function: Evaluating Integer Programming Models over Multiple Right-hand Sides

For an integer programming model with fixed data, the linear programming relaxation gap is considered one of the most important measures of model quality. There is no consensus, however, on appropriate measures of model quality that account for data variation. In particular, when the right-hand side is not known exactly, one must assess a model … Read more

Solving Pooling Problems by LP and SOCP Relaxations and Rescheduling Methods

The pooling problem is an important industrial problem in the class of network flow problems for allocating gas flow in pipeline transportation networks. For P-formulation of the pooling problem with time discretization, we propose second order cone programming (SOCP) and linear programming (LP) relaxations and prove that they obtain the same optimal value as the … Read more

Linearized Robust Counterparts of Two-stage Robust Optimization Problem with Applications in Operations Management

In this article, we discuss an alternative method for deriving conservative approximation models for two-stage robust optimization problems. The method extends in a natural way a linearization scheme that was recently proposed to construct tractable reformulations for robust static problems involving profit functions that decompose as a sum of piecewise linear concave expressions. Given that … Read more

Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems

Robust optimization is a methodology that has gained a lot of attention in the recent years. This is mainly due to the simplicity of the modeling process and ease of resolution even for large scale models. Unfortunately, the second property is usually lost when the cost function that needs to be robustified is not concave … Read more

Effective formulation reductions for the quadratic assignment problem

In this paper we study two formulation reductions for the quadratic assignment problem (QAP). In particular we apply these reductions to the well known Adams and Johnson [2] integer linear programming formulation of the QAP, which we call formulation IPQAP-I. We analyze two cases: In the first case, we study the effect of constraint reduction. … Read more