An Almost Exact Solution to the Min Completion Time Variance in a Single Machine

We consider a single machine scheduling problem to minimize the completion time variance of n jobs. This problem is known to be NP-hard and our contribution is to establish a novel bounding condition for a characterization of an optimal sequence. Specifically, we prove a necessary and sufficient condition (which can be verified in O(n\log n)) … Read more

Analysis of mixed integer programming formulations for single machine scheduling problems with sequence dependent setup times and release dates

In this article, six different mixed integer programming (MIP) formulations are proposed and analyzed. These formulations are based on the knowledge of four different paradigms for single machine scheduling problems (SMSP) with sequence dependent setup times and release dates. Each formulation reflects a specific concept on how the variables and parameters are defined, requiring particular … Read more

A big bucket time indexed formulation for nonpreemptive single machine scheduling problems

A big bucket time indexed mixed integer linear programming formulation for nonpreemptive single machine scheduling problems is presented in which the length of each period can be as large as the processing time of the shortest job. The model generalises the classical time indexed model to one in which at most two jobs can be … Read more

Near-optimal solutions of large-scale Single Machine Scheduling Problems

We present a lagrangean heuristic based on the time-indexed formulation of the Single Machine Scheduling Problem with Release Dates. We observe that lagrangian relaxation of job constraints leads to a Weighted Stable Set problem on an Interval Graph. The problem is polynomially solvable by a dynamic programming algorithm. Computational experience is reported on instances up … Read more