Exploring Nonlinear Distance Metrics for Lipschitz Constant Estimation in Lower Bound Construction for Global Optimization

Bounds play a crucial role in guiding optimization algorithms, improving their speed and quality, and providing optimality gaps. While Lipschitz constant-based lower bound construction is an effective technique, the quality of the linear bounds depends on the function’s topological properties. In this research, we improve upon this by incorporating nonlinear distance metrics and surrogate approximations … Read more

Information Complexity of Mixed-integer Convex Optimization

We investigate the information complexity of mixed-integer convex optimization under different types of oracles. We establish new lower bounds for the standard first-order oracle, improving upon the previous best known lower bound. This leaves only a lower order linear term (in the dimension) as the gap between the lower and upper bounds. This is derived … Read more

Generating Cutting Inequalities Successively for Quadratic Optimization Problems in Binary Variables

We propose a successive generation of cutting inequalities for binary quadratic optimization problems. Multiple cutting inequalities are successively generated for the convex hull of the set of the optimal solutions $\subset \{0, 1\}^n$, while the standard cutting inequalities are used for the convex hull of the feasible region. An arbitrary linear inequality with integer coefficients … Read more

An Almost Exact Solution to the Min Completion Time Variance in a Single Machine

We consider a single machine scheduling problem to minimize the completion time variance of n jobs. This problem is known to be NP-hard and our contribution is to establish a novel bounding condition for a characterization of an optimal sequence. Specifically, we prove a necessary and sufficient condition (which can be verified in O(n\log n)) … Read more

Non-convex min-max fractional quadratic problems under quadratic constraints: copositive relaxations

In this paper we address a min-max problem of fractional quadratic (not necessarily convex) over linear functions on a feasible set described by linear and (not necessarily convex) quadratic functions. We propose a conic reformulation on the cone of completely positive matrices. By relaxation, a doubly non negative conic formulation is used to provide lower … Read more

A polynomial time algorithm for the linearization problem of the QSPP and its applications

Given an instance of the quadratic shortest path problem (QSPP) on a digraph $G$, the linearization problem for the QSPP asks whether there exists an instance of the linear shortest path problem on $G$ such that the associated costs for both problems are equal for every $s$-$t$ path in $G$. We prove here that the … Read more

Oracle Complexity of Second-Order Methods for Smooth Convex Optimization

Second-order methods, which utilize gradients as well as Hessians to optimize a given function, are of major importance in mathematical optimization. In this work, we study the oracle complexity of such methods, or equivalently, the number of iterations required to optimize a function to a given accuracy. Focusing on smooth and convex functions, we derive … Read more

Semi-Online Scheduling on Two Uniform Machines with Known Optimum, Part I: Tight Lower Bounds

This problem is about to schedule a number of jobs of different lengths on two uniform machines with given speeds $1$ and $s \geq 1$, so that the overall completion time, i.e., the makespan, is earliest possible. We consider a semi-online variant (introduced for equal speeds) by Azar and Regev, where the jobs arrive one … Read more

On the Quadratic Shortest Path Problem

Finding the shortest path in a directed graph is one of the most important combinatorial optimization problems, having applications in a wide range of fields. In its basic version, however, the problem fails to represent situations in which the value of the objective function is determined not only by the choice of each single arc, … Read more

Lower bounding procedure for the Asymmetric Quadratic Traveling Salesman Problem

In this paper we consider the Asymmetric Quadratic Traveling Salesman Problem. Given a directed graph and a function that maps every pair of consecutive arcs to a cost, the problem consists in finding a cycle that visits every vertex exactly once and such that the sum of the costs is minimum. We propose an extended … Read more