Nonsmooth Matrix Valued Functions Defined by Singular Values

A class of matrix valued functions defined by singular values of nonsymmetric matrices is shown to have many properties analogous to matrix valued functions defined by eigenvalues of symmetric matrices. In particular, the (smoothed) matrix valued Fischer-Burmeister function is proved to be strongly semismooth everywhere. This result is also used to show the strong semismoothness … Read more

Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems

It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions. This directly implies that the eigenvalues of a symmetric matrix are semismooth everywhere. Based on a very recent … Read more