Inexact Proximal-Gradient Methods with Support Identification

We consider the proximal-gradient method for minimizing an objective function that is the sum of a smooth function and a non-smooth convex function. A feature that distinguishes our work from most in the literature is that we assume that the associated proximal operator does not admit a closed-form solution. To address this challenge, we study … Read more

Fast cluster detection in networks by first-order optimization

Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we … Read more