Progressively Sampled Equality-Constrained Optimization

An algorithm is proposed, analyzed, and tested for solving continuous nonlinear-equality-constrained optimization problems where the constraints are defined by an expectation or an average over a large (finite) number of terms. The main idea of the algorithm is to solve a sequence of equality-constrained problems, each involving a finite sample of constraint-function terms, over which … Read more

Active-Set Identification in Noisy and Stochastic Optimization

Identifying active constraints from a point near an optimal solution is important both theoretically and practically in constrained continuous optimization, as it can help identify optimal Lagrange multipliers and essentially reduces an inequality-constrained problem to an equality-constrained one. Traditional active-set identification guarantees have been proved under assumptions of smoothness and constraint qualifications, and assume exact … Read more

A Proximal-Gradient Method for Constrained Optimization

We present a new algorithm for solving optimization problems with objective functions that are the sum of a smooth function and a (potentially) nonsmooth regularization function, and nonlinear equality constraints. The algorithm may be viewed as an extension of the well-known proximal-gradient method that is applicable when constraints are not present. To account for nonlinear … Read more

A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems

A stochastic-gradient-based interior-point algorithm for minimizing a continuously differentiable objective function (that may be nonconvex) subject to bound constraints is presented, analyzed, and demonstrated through experimental results. The algorithm is unique from other interior-point methods for solving smooth (nonconvex) optimization problems since the search directions are computed using stochastic gradient estimates. It is also unique … Read more

Sequential Quadratic Optimization for Stochastic Optimization with Deterministic Nonlinear Inequality and Equality Constraints

A sequential quadratic optimization algorithm for minimizing an objective function defined by an expectation subject to nonlinear inequality and equality constraints is proposed, analyzed, and tested. The context of interest is when it is tractable to evaluate constraint function and derivative values in each iteration, but it is intractable to evaluate the objective function or … Read more

Inexact Proximal-Gradient Methods with Support Identification

We consider the proximal-gradient method for minimizing an objective function that is the sum of a smooth function and a non-smooth convex function. A feature that distinguishes our work from most in the literature is that we assume that the associated proximal operator does not admit a closed-form solution. To address this challenge, we study … Read more

Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization

A worst-case complexity bound is proved for a sequential quadratic optimization (commonly known as SQP) algorithm that has been designed for solving optimization problems involving a stochastic objective function and deterministic nonlinear equality constraints. Barring additional terms that arise due to the adaptivity of the monotonically nonincreasing merit parameter sequence, the proved complexity bound is … Read more

Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Function Subject to Deterministic Nonlinear Equality Constraints

An algorithm is proposed, analyzed, and tested experimentally for solving stochastic optimization problems in which the decision variables are constrained to satisfy equations defined by deterministic, smooth, and nonlinear functions. It is assumed that constraint function and derivative values can be computed, but that only stochastic approximations are available for the objective function and its … Read more

A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians

A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear equality constrained optimization problems in which the objective function is defined by an expectation of a stochastic function. The algorithmic structure of the proposed method is based on a step decomposition strategy that is known in the literature to be widely effective in practice, … Read more

A Subspace Acceleration Method for Minimization Involving a Group Sparsity-Inducing Regularizer

We consider the problem of minimizing an objective function that is the sum of a convex function and a group sparsity-inducing regularizer. Problems that integrate such regularizers arise in modern machine learning applications, often for the purpose of obtaining models that are easier to interpret and that have higher predictive accuracy. We present a new … Read more