A Proximal-Gradient Method for Constrained Optimization

We present a new algorithm for solving optimization problems with objective functions that are the sum of a smooth function and a (potentially) nonsmooth regularization function, and nonlinear equality constraints. The algorithm may be viewed as an extension of the well-known proximal-gradient method that is applicable when constraints are not present. To account for nonlinear … Read more

Inexact Proximal-Gradient Methods with Support Identification

\(\) We consider the proximal-gradient method for minimizing an objective function that is the sum of a smooth function and a non-smooth convex function. A feature that distinguishes our work from most in the literature is that we assume that the associated proximal operator does not admit a closed-form solution. To address this challenge, we … Read more

Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming

Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. … Read more

Worst-Case Complexity of TRACE with Inexact Subproblem Solutions for Nonconvex Smooth Optimization

An algorithm for solving nonconvex smooth optimization problems is proposed, analyzed, and tested. The algorithm is an extension of the Trust Region Algorithm with Contractions and Expansions (TRACE) [Math. Prog. 162(1):132, 2017]. In particular, the extension allows the algorithm to use inexact solutions of the arising subproblems, which is an important feature for solving large-scale … Read more

A Subspace Acceleration Method for Minimization Involving a Group Sparsity-Inducing Regularizer

We consider the problem of minimizing an objective function that is the sum of a convex function and a group sparsity-inducing regularizer. Problems that integrate such regularizers arise in modern machine learning applications, often for the purpose of obtaining models that are easier to interpret and that have higher predictive accuracy. We present a new … Read more

Concise Complexity Analyses for Trust-Region Methods

Concise complexity analyses are presented for simple trust region algorithms for solving unconstrained optimization problems. In contrast to a traditional trust region algorithm, the algorithms considered in this paper require certain control over the choice of trust region radius after any successful iteration. The analyses highlight the essential algorithm components required to obtain certain complexity … Read more

Regional Complexity Analysis of Algorithms for Nonconvex Smooth Optimization

A strategy is proposed for characterizing the worst-case performance of algorithms for solving nonconvex smooth optimization problems. Contemporary analyses characterize worst-case performance by providing, under certain assumptions on an objective function, an upper bound on the number of iterations (or function or derivative evaluations) required until a pth-order stationarity condition is approximately satisfied. This arguably … Read more

An Inexact Regularized Newton Framework with a Worst-Case Iteration Complexity of $\mathcal{O}(\epsilon^{-3/2})$ for Nonconvex Optimization

An algorithm for solving smooth nonconvex optimization problems is proposed that, in the worst-case, takes $\mathcal{O}(\epsilon^{-3/2})$ iterations to drive the norm of the gradient of the objective function below a prescribed positive real number $\epsilon$ and can take $\mathcal{O}(\epsilon^{-3})$ iterations to drive the leftmost eigenvalue of the Hessian of the objective above $-\epsilon$. The proposed … Read more

Complexity Analysis of a Trust Funnel Algorithm for Equality Constrained Optimization

A method is proposed for solving equality constrained nonlinear optimization problems involving twice continuously differentiable functions. The method employs a trust funnel approach consisting of two phases: a first phase to locate an $\epsilon$-feasible point and a second phase to seek optimality while maintaining at least $\epsilon$-feasibility. A two-phase approach of this kind based on … Read more

A Trust Region Algorithm with a Worst-Case Iteration Complexity of ${\cal O}(\epsilon^{-3/2})$ for Nonconvex Optimization

We propose a trust region algorithm for solving nonconvex smooth optimization problems. For any $\bar\epsilon \in (0,\infty)$, the algorithm requires at most $\mathcal{O}(\epsilon^{-3/2})$ iterations, function evaluations, and derivative evaluations to drive the norm of the gradient of the objective function below any $\epsilon \in (0,\bar\epsilon]$. This improves upon the $\mathcal{O}(\epsilon^{-2})$ bound known to hold for … Read more