Tightening Quadratic Convex Relaxations for the AC Optimal Transmission Switching Problem

The Alternating Current Optimal Transmission Switching (ACOTS) problem incorporates line switching decisions into the fundamental AC optimal power flow (ACOPF) problem. The advantages of the ACOTS problem are well-known in terms of reducing the operational cost and improving system reliability. ACOTS optimization models contain discrete variables and nonlinear, non-convex structures, which make it difficult to … Read more

Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality

We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions. The latter occur, for instance, in the context of the curtailment of renewables or the switching of power generation units and transmission lines. Our approach delivers globally optimal solutions and is provably convergent. We model AC … Read more

Achieving Cost-Effective Power Grid Hardening through Transmission Network Topology Control

Vulnerability of power grid is a critical issue in power industry. In order to understand and reduce power grid vulnerability under threats, existing research often employs defender-attacker-defender (DAD) models to derive effective protection plans and evaluate grid performances under various contingencies. Transmission line switching (also known as topology control) is an effective operation to mitigate … Read more

An Exact Algorithm for Power Grid Interdiction Problem with Line Switching

Power grid vulnerability analysis is often performed through solving a bi-level optimization problem, which, if solved to optimality, yields the most destructive interdiction plan with the worst loss. As one of the most effective operations to mitigate deliberate outages or attacks, transmission line switching recently has been included and modeled by a binary variable in … Read more