Skip to content

Optimization Online

  • Welcome
  • Repository
  • Submit
  • About
  • Help
  • My Eprints

tree size estimation

The SCIP Optimization Suite 7.0

Published: 2020/03/30
  • Daniel Anderson
  • Ksenia Bestuzheva
  • Wei-Kun Chen
  • Leon Eifler
  • Gerald Gamrath
  • Maxime Gasse
  • Ambros Gleixner
  • Gregor Hendel
  • Christopher Hojny
  • Thorsten Koch
  • Pierre Le Bodic
  • Stephen J. Maher
  • Frederic Matter
  • Matthias Miltenberger
  • Marc E. Pfetsch
  • Felipe Serrano
  • Dieter Weninger
  • Jakob Witzig
  • Patrick Gemander
  • Leona Gottwald
  • Katrin Halbig
  • Erik Mühmer
  • Benjamin Müller
  • Franziska Schlösser
  • Yuji Shinano
  • Christine Tawfik
  • Stefan Vigerske
  • Fabian Wegscheider
  • Categories (Mixed) Integer Linear Programming, (Mixed) Integer Nonlinear Programming Tags benders decomposition, branch-and-cut, branch-and-price, column generation, constraint integer programming, linear programming, mixed-integer linear programming, mixed-integer nonlinear programming, mixed-integer semidefinite programming, optimization solver, parallelization, presolving, steiner tree optimization, tree size estimation

    The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies … Read more

    Log in


    Repository

    Author List

    Months

    Categories

    Keywords

    alternating direction method of multipliers approximation algorithms augmented lagrangian method bilevel optimization Branch-and-Bound branch-and-cut chance constraints column generation combinatorial optimization complexity conic optimization convex optimization cutting planes decomposition derivative-free optimization distributionally robust optimization duality dynamic programming first-order methods global convergence global optimization heuristics integer programming interior point methods large-scale optimization linear programming machine learning mixed-integer linear programming mixed-integer nonlinear programming mixed-integer programming multiobjective optimization nonconvex optimization nonlinear optimization nonlinear programming nonsmooth optimization optimal control optimization proximal point algorithm quadratic programming robust optimization semidefinite programming stochastic optimization stochastic programming trust-region methods unconstrained optimization

    © 2025 Optimization Online • Child Theme of GeneratePress
    For feedback or questions, contact optonline@wid.wisc.edu.