The Rectangular Spiral or the n_1 × n_2 × · · · × n_k Points Problem

A generalization of Ripà’s square spiral solution for the n × n × ··· × n Points Upper Bound Problem. Additionally, we provide a non-trivial lower bound for the k-dimensional n_1 × n_2 × ··· × n_k Points Problem. In this way, we can build a range in which, with certainty, all the best possible … Read more

An easily computable upper bound on the Hoffman constant for homogeneous inequality systems

Let $A\in \mathbb{R}^{m\times n}\setminus \{0\}$ and $P:=\{x:Ax\le 0\}$. This paper provides a procedure to compute an upper bound on the following {\em homogeneous Hoffman constant} \[ H_0(A) := \sup_{u\in \mathbb{R}^n \setminus P} \frac{\text{dist}(u,P)}{\text{dist}(Au, \mathbb{R}^m_-)}. \] In sharp contrast to the intractability of computing more general Hoffman constants, the procedure described in this paper is entirely … Read more

Minimum-Link Covering Trails for any Hypercubic Lattice

In 1994, Kranakis et al. published a conjecture about the minimum link-length of every rectilinear covering path for the \(k\)-dimensional grid \(P(n,k) := \{0,1, \dots, n-1\} \times \{0,1, \dots, n-1\} \times \cdots \times \{0,1, \dots, n-1\}\). In this paper we consider the general, NP-complete, Line-Cover problem, where the edges are not required to be axis-parallel, … Read more

Solving the n_1 × n_2 × n_3 Points Problem for n_3 < 6

In this paper, we show enhanced upper bounds of the nontrivial n_1 × n_2 × n_3 points problem for every n_1 ≤ n_2 ≤ n_3 < 6. We present new patterns that drastically improve the previously known algorithms for finding minimum-link covering trails. CitationAn old version of the present paper has been published on “In-Sight: … Read more