On the Convergence of Constrained Gradient Method

The constrained gradient method (CGM) has recently been proposed to solve convex optimization and monotone variational inequality (VI) problems with general functional constraints. While existing literature has established convergence results for CGM, the assumptions employed therein are quite restrictive; in some cases, certain assumptions are mutually inconsistent, leading to gaps in the underlying analysis. This … Read more

A linearly convergent algorithm for variational inequalities based on fiber bundle

The variational inequality (VI) problem is a fundamental mathematical framework for many classical problems. This paper introduces an algorithm that applies to arbitrary finite-dimensional VIs with general compact convex sets and general continuous functions. The algorithm guarantees global linear convergence to an approximate solution without requiring any assumptions, including the typical monotonicity. Our approach adapts … Read more

Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones

Given a closed convex cone C in a finite dimensional real Hilbert space H, a weakly homogeneous map f:C–>H is a sum of two continuous maps h and g, where h is positively homogeneous of (positive) degree gamma on C and g(x)/||x||^gamma–>0 as ||x||–>infinity in C. Given such a map f, a nonempty closed convex … Read more

A Relaxed-Projection Splitting Algorithm for Variational Inequalities in Hilbert Spaces

We introduce a relaxed-projection splitting algorithm for solving variational inequalities in Hilbert spaces for the sum of nonsmooth maximal monotone operators, where the feasible set is defined by a nonlinear and nonsmooth continuous convex function inequality. In our scheme, the orthogonal projections onto the feasible set are replaced by projections onto separating hyperplanes. Furthermore, each … Read more

On the Proximal Jacobian Decomposition of ALM for Multiple-block Separable Convex Minimization Problems and its Relationship to ADMM

The augmented Lagrangian method (ALM) is a benchmark for solving convex minimization problems with linear constraints. When the objective function of the model under consideration is representable as the sum of some functions without coupled variables, a Jacobian or Gauss-Seidel decomposition is often implemented to decompose the ALM subproblems so that the functions’ properties could … Read more

Projections Onto Super-Half-Spaces for Monotone Variational Inequality Problems in Finite-Dimensional Spaces

The variational inequality problem (VIP) is considered here. We present a general algorithmic scheme which employs projections onto hyperplanes that separate balls from the feasible set of the VIP instead of projections onto the feasible set itself. Our algorithmic scheme includes the classical projection method and Fukushima’s subgradient projection method as special cases. CitationTechnical report: … Read more