An Envelope for Davis-Yin Splitting and Strict Saddle Point Avoidance

It is known that operator splitting methods based on Forward Backward Splitting (FBS), Douglas-Rachford Splitting (DRS), and Davis-Yin Splitting (DYS) decompose a difficult optimization problems into simpler subproblem under proper convexity and smoothness assumptions. In this paper, we identify an envelope (an objective function) whose gradient descent iteration under a variable metric coincides with DYS … Read more

Block-wise Alternating Direction Method of Multipliers with Gaussian Back Substitution for Multiple-block Convex Programming

We consider the linearly constrained convex minimization model with a separable objective function which is the sum of m functions without coupled variables, and discuss how to design an efficient algorithm based on the fundamental technique of splitting the augmented Lagrangian method (ALM). Our focus is the specific big-data scenario where m is huge. A … Read more

On the Direct Extension of ADMM for Multi-block Separable Convex Programming and Beyond: From Variational Inequality Perspective

When the alternating direction method of multipliers (ADMM) is extended directly to a multi-block separable convex minimization model whose objective function is in form of more than two functions without coupled variables, it was recently shown that the convergence is not guaranteed. This fact urges to develop efficient algorithms that can preserve completely the numerical … Read more

A Relaxed-Projection Splitting Algorithm for Variational Inequalities in Hilbert Spaces

We introduce a relaxed-projection splitting algorithm for solving variational inequalities in Hilbert spaces for the sum of nonsmooth maximal monotone operators, where the feasible set is defined by a nonlinear and nonsmooth continuous convex function inequality. In our scheme, the orthogonal projections onto the feasible set are replaced by projections onto separating hyperplanes. Furthermore, each … Read more

Subspace accelerated matrix splitting algorithms for bound-constrained quadratic programming and linear complementarity problems

This paper studies the solution of two problems—bound-constrained quadratic programs and linear complementarity problems—by two-phase methods that consist of an active set prediction phase and a subspace phase. The algorithms enjoy favorable convergence properties under weaker assumptions than those assumed for other methods in the literature. The active set prediction phase employs matrix splitting iterations … Read more

Iteration-complexity of block-decomposition algorithms and the alternating minimization augmented Lagrangian method

In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an … Read more