EQUALITY CONSTRAINTS, RIEMANNIAN MANIFOLDS AND DIRECT SEARCH METHODS

We present a general procedure for handling equality constraints in optimization problems that is of particular use in direct search methods. First we will provide the necessary background in differential geometry. In particular, we will see what a Riemannian manifold is, what a tangent space is, how to move over a manifold and how to … Read more

DIRECT SEARCH METHODS OVER LIPSCHITZ MANIFOLDS

We extend direct search methods to optimization problems that include equality constraints given by Lipschitz functions. The equality constraints are assumed to implicitly define a Lipschitz manifold. Numerically implementing the inverse (implicit) function theorem allows us to define a new problem on the tangent spaces of the manifold. We can then use a direct search … Read more

A SIMPLICIAL CONTINUATION DIRECT SEARCH METHOD

A direct search method for the class of problems considered by Lewis and Torczon [\textit{SIAM J. Optim.}, 12 (2002), pp. 1075-1089] is developed. Instead of using an augmented Lagrangian method, a simplicial approximation method to the feasible set is implicitly employed. This allows the points our algorithm considers to conveniently remain within an \textit{a priori} … Read more

A Min-Max Regret Robust Optimization Approach for Large Scale Full Factorial Scenario Design of Data Uncertainty

This paper presents a three-stage optimization algorithm for solving two-stage robust decision making problems under uncertainty with min-max regret objective. The structure of the first stage problem is a general mixed integer (binary) linear programming model with a specific model of uncertainty that can occur in any of the parameters, and the second stage problem … Read more

Revisiting the Greedy Approach to Submodular Set Function Maximization

We consider the problem of maximizing a nondecreasing submodular set function over various constraint structures. Specifically, we explore the performance of the greedy algorithm, and a related variant, the locally greedy algorithm in solving submodular function maximization problems. Most classic results on the greedy algorithm and its variant assume the existence of an optimal polynomial-time … Read more

Operations Risk Management by Planning Optimally the Qualified Workforce Capacity

Operational risks are defined as risks of human origin. Unlike financial risks that can be handled in a financial manner (e.g. insurances, savings, derivatives), the treatment of operational risks calls for a “managerial approach”. Consequently, we propose a new way of dealing with operational risk, which relies on the well known aggregate planning model. To … Read more