Efficient high-precision dense matrix algebra on parallel architectures for nonlinear discrete optimization

We provide a proof point for the idea that matrix-based algorithms for discrete optimization problems, mainly conceived for proving theoretical efficiency, can be easily and efficiently implemented on massively-parallel architectures by exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision dense linear algebra. We have successfully implemented our algorithm on the Blue Gene/L computer at IBM's T.J. Watson Research Center. Additionally, we have delineated the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational, reliability, and interconnect perspectives.

Citation

IBM Research Report RC24682, 10/29/2008

Article

Download

View Efficient high-precision dense matrix algebra on parallel architectures for nonlinear discrete optimization