Bilevel stochastic methods for optimization and machine learning: Bilevel stochastic descent and DARTS

Two-level stochastic optimization formulations have become instrumental in a number of machine learning contexts such as neural architecture search, continual learning, adversarial learning, and hyperparameter tuning. Practical stochastic bilevel optimization problems become challenging in optimization or learning scenarios where the number of variables is high or there are constraints. The goal of this paper is … Read more

Penetration depth between two convex polyhedra: An efficient global optimization approach

During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, … Read more