A Dynamic Traveling Salesman Problem with Stochastic Arc Costs

We propose a dynamic traveling salesman problem (TSP) with stochastic arc costs motivated by applications, such as dynamic vehicle routing, in which a decision’s cost is known only probabilistically beforehand but is revealed dynamically before the decision is executed. We formulate the problem as a dynamic program (DP) and compare it to static counterparts to … Read more

On Traveling Salesman Games with Asymmetric Costs

We consider cooperative traveling salesman games with non-negative asymmetric costs satisfying the triangle inequality. We construct a stable cost allocation with budget balance guarantee equal to the Held-Karp integrality gap for the asymmetric traveling salesman problem, using the parsimonious property and a previously unknown connection to linear production games. We also show that our techniques … Read more

Optimal Toll Design: A Lower Bound Framework for the Asymmetric Traveling Salesman Problem

We propose a framework of lower bounds for the asymmetric traveling salesman problem (TSP) based on approximating the dynamic programming formulation with diff erent basis vector sets. We discuss how several well-known TSP lower bounds correspond to intuitive basis vector choices and give an economic interpretation wherein the salesman must pay tolls as he travels between … Read more

Approximating the Stability Region for Binary Mixed-Integer Programs

We consider optimization problems with some binary variables, where the objective function is linear in these variables. The stability region of a given solution of such a problem is the polyhedral set of objective coefficients for which the solution is optimal. A priori knowledge of this set provides valuable information for sensitivity analysis and re-optimization … Read more