The One-Dimensional Dynamic Dispatch Waves Problem

We study same-day delivery (SDD) distribution systems by formulating the Dynamic Dispatch Wave Problem (DDWP), which models a depot where delivery requests arrive dynamically throughout a service day. At any dispatch epoch (wave), the information available to the decision maker is (1) a set of known, open requests which remain unfulfilled, and (2) a set … Read more

Equivalence of an Approximate Linear Programming Bound with the Held-Karp Bound for the Traveling Salesman Problem

We consider two linear relaxations of the asymmetric traveling salesman problem (TSP), the Held-Karp relaxation of the TSP’s arc-based formulation, and a particular approximate linear programming (ALP) relaxation obtained by restricting the dual of the TSP’s shortest path formulation. We show that the two formulations produce equal lower bounds for the TSP’s optimal cost regardless … Read more

Optimal Toll Design: A Lower Bound Framework for the Asymmetric Traveling Salesman Problem

We propose a framework of lower bounds for the asymmetric traveling salesman problem (TSP) based on approximating the dynamic programming formulation with diff erent basis vector sets. We discuss how several well-known TSP lower bounds correspond to intuitive basis vector choices and give an economic interpretation wherein the salesman must pay tolls as he travels between … Read more