LMBOPT — a limited memory method for bound-constrained optimization

Recently, Neumaier and Azmi gave a comprehensive convergence theory for a generic algorithm for bound constrained optimization problems with a continuously differentiable objective function. The algorithm combines an active set strategy with a gradient-free line search CLS along a piecewise linear search path defined by directions chosen to reduce zigzagging. This paper describes LMBOPT, an … Read more

Line search and convergence in bound-constrained optimization

The first part of this paper discusses convergence properties of a new line search method for the optimization of continuously differentiable functions with Lipschitz continuous gradient. The line search uses (apart from the gradient at the current best point) function values only. After deriving properties of the new, in general curved, line search, global convergence … Read more