Plea for a semidefinite optimization solver in complex numbers

Numerical optimization in complex numbers has drawn much less attention than in real numbers. A widespread opinion is that, since a complex number is a pair of real numbers, the best strategy to solve a complex optimization problem is to transform it into real numbers and to solve the latter by a real number solver. … Read more

Strong duality in Lasserre’s hierarchy for polynomial optimization

A polynomial optimization problem (POP) consists of minimizing a multivariate real polynomial on a semi-algebraic set $K$ described by polynomial inequalities and equations. In its full generality it is a non-convex, multi-extremal, difficult global optimization problem. More than an decade ago, J.~B.~Lasserre proposed to solve POPs by a hierarchy of convex semidefinite programming (SDP) relaxations … Read more

Application of the Moment-SOS Approach to Global Optimization of the OPF Problem

Finding a global solution to the optimal power flow (OPF) problem is difficult due to its nonconvexity. A convex relaxation in the form of semidefinite programming (SDP) has attracted much attention lately as it yields a global solution in several practical cases. However, it does not in all cases, and such cases have been documented … Read more