An ADMM-Based Interior-Point Method for Large-Scale Linear Programming

In this paper, we propose a new framework to implement interior point method (IPM) in order to solve some very large scale linear programs (LP). Traditional IPMs typically use Newton’s method to approximately solve a subproblem that aims to minimize a log-barrier penalty function at each iteration. Due its connection to Newton’s method, IPM is … Read more

Structured Nonconvex and Nonsmooth Optimization: Algorithms and Iteration Complexity Analysis

Nonconvex optimization problems are frequently encountered in much of statistics, business, science and engineering, but they are not yet widely recognized as a technology. A reason for this relatively low degree of popularity is the lack of a well developed system of theory and algorithms to support the applications, as is the case for its … Read more

Global Convergence of Unmodified 3-Block ADMM for a Class of Convex Minimization Problems

The alternating direction method of multipliers (ADMM) has been successfully applied to solve structured convex optimization problems due to its superior practical performance. The convergence properties of the 2-block ADMM have been studied extensively in the literature. Specifically, it has been proven that the 2-block ADMM globally converges for any penalty parameter $\gamma>0$. In this … Read more

Iteration Complexity Analysis of Multi-Block ADMM for a Family of Convex Minimization without Strong Convexity

The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems due to its superior practical performance. On the theoretical side however, a counterexample was shown in [7] indicating that the multi-block ADMM for minimizing the sum of $N$ $(N\geq 3)$ convex functions with $N$ block variables linked by linear … Read more

On the Global Linear Convergence of the ADMM with Multi-Block Variables

The alternating direction method of multipliers (ADMM) has been widely used for solving structured convex optimization problems. In particular, the ADMM can solve convex programs that minimize the sum of $N$ convex functions with $N$-block variables linked by some linear constraints. While the convergence of the ADMM for $N=2$ was well established in the literature, … Read more

On the Sublinear Convergence Rate of Multi-Block ADMM

The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems. Despite of its success in practice, the convergence of the standard ADMM for minimizing the sum of $N$ $(N\geq 3)$ convex functions whose variables are linked by linear constraints, has remained unclear for a very long time. Recently, Chen … Read more

An Extragradient-Based Alternating Direction Method for Convex Minimization

In this paper, we consider the problem of minimizing the sum of two convex functions subject to linear linking constraints. The classical alternating direction type methods usually assume that the two convex functions have relatively easy proximal mappings. However, many problems arising from statistics, image processing and other fields have the structure that while one … Read more