An improved algorithm for L2-Lp minimization problem

In this paper we consider a class of non-Lipschitz and non-convex minimization problems which generalize the L2−Lp minimization problem. We propose an iterative algorithm that decides the next iteration based on the local convexity/concavity/sparsity of its current position. We show that our algorithm finds an epsilon-KKT point within O(log(1/epsilon)) iterations. The same result is also … Read more

On Doubly Positive Semidefinite Programming Relaxations

Recently, researchers have been interested in studying the semidefinite programming (SDP) relaxation model, where the matrix is both positive semidefinite and entry-wise nonnegative, for quadratically constrained quadratic programming (QCQP). Comparing to the basic SDP relaxation, this doubly-positive SDP model possesses additional O(n2) constraints, which makes the SDP solution complexity substantially higher than that for the … Read more

On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming

In this paper, we analyze two popular semidefinite programming \SDPb relaxations for quadratically constrained quadratic programs \QCQPb with matrix variables. These are based on \emph{vector-lifting} and on \emph{matrix lifting} and are of different size and expense. We prove, under mild assumptions, that these two relaxations provide equivalent bounds. Thus, our results provide a theoretical guideline … Read more

Geometric Rounding: A Dependent Rounding Scheme for Allocation Problems

This paper presents a general technique to develop approximation algorithms for allocation problems with integral assignment constraints. The core of the method is a randomized dependent rounding scheme, called geometric rounding, which yields termwise rounding ratios (in expectation), while emphasizing the strong correlation between events. We further explore the intrinsic geometric structure and general theoretical … Read more