A Polynomial-time Algorithm with Tight Error Bounds for Single-period Unit Commitment Problem

This paper proposes a Lagrangian dual based polynomial-time approximation algorithm for solving the single-period unit commitment problem, which can be formulated as a mixed integer quadratic programming problem and proven to be NP-hard. Tight theoretical bounds for the absolute errors and relative errors of the approximate solutions generated by the proposed algorithm are provided. Computational … Read more

Geometric Dual Formulation for First-derivative-based Univariate Cubic $ Splines

With the objective of generating “shape-preserving” smooth interpolating curves that represent data with abrupt changes in magnitude and/or knot spacing, we study a class of first-derivative-based ${\cal C}^1$-smooth univariate cubic $L_1$ splines. An $L_1$ spline minimizes the $L_1$ norm of the difference between the first-order derivative of the spline and the local divided difference of … Read more

Constructing Generalized Mean Functions Using Convex Functions with Regularity Conditions

The generalized mean function has been widely used in convex analysis and mathematical programming. This paper studies a further generalization of such a function. A necessary and sufficient condition is obtained for the convexity of a generalized function. Additional sufficient conditions that can be easily checked are derived for the purpose of identifying some classes … Read more

Recursive Approximation of the High Dimensional Max Function

An alternative smoothing method for the high dimensional $\max $ function has been studied. The proposed method is a recursive extension of the two dimensional smoothing functions. In order to analyze the proposed method, a theoretical framework related to smoothing methods has been discussed. Moreover, we support our discussion by considering some application areas. This … Read more