Using dual relaxations in multiobjective mixed-integer quadratic programming

We present a branch-and-bound method for multiobjective mixed-integer convex quadratic programs that computes a superset of efficient integer assignments and a coverage of the nondominated set. The method relies on outer approximations of the upper image set of continuous relaxations. These outer approximations are obtained addressing the dual formulations of specific subproblems where the values … Read more

A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX

We translate the algorithmic question of whether to linearize convex Mixed-Integer Quadratic Programming problems (MIQPs) into a classification task, and use machine learning (ML) techniques to tackle it. We represent MIQPs and the linearization decision by careful target and feature engineering. Computational experiments and evaluation metrics are designed to further incorporate the optimization knowledge in … Read more

A Polynomial-time Algorithm with Tight Error Bounds for Single-period Unit Commitment Problem

This paper proposes a Lagrangian dual based polynomial-time approximation algorithm for solving the single-period unit commitment problem, which can be formulated as a mixed integer quadratic programming problem and proven to be NP-hard. Tight theoretical bounds for the absolute errors and relative errors of the approximate solutions generated by the proposed algorithm are provided. Computational … Read more

A mixed-integer optimization approach to an exhaustive cross-validated model selection for regression

We consider a linear regression model for which we assume that many of the observed regressors are irrelevant for the prediction. To avoid overfitting, we conduct a variable selection and only include the true predictors for the least square fitting. The best subset selection gained much interest in recent years for addressing this objective. For … Read more

Mixed-integer Quadratic Programming is in NP

Mixed-integer quadratic programming (MIQP) is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more

On two relaxations of quadratically-constrained cardinality minimization

This paper considers a quadratically-constrained cardinality minimization problem with applications to digital filter design, subset selection for linear regression, and portfolio selection. Two relaxations are investigated: the continuous relaxation of a mixed integer formulation, and an optimized diagonal relaxation that exploits a simple special case of the problem. For the continuous relaxation, an absolute upper … Read more

Semidefinite Relaxations for Non-Convex Quadratic Mixed-Integer Programming

We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this … Read more

Old Wine in a New Bottle: The MILP Road to MIQCP

This paper surveys results on the NP-hard mixed-integer quadratically constrained programming problem. The focus is strong convex relaxations and valid inequalities, which can become the basis of efficient global techniques. In particular, we discuss relaxations and inequalities arising from the algebraic description of the problem as well as from dynamic procedures based on disjunctive programming. … Read more