Condensed interior-point methods: porting reduced-space approaches on GPU hardware

The interior-point method (IPM) has become the workhorse method for nonlinear programming. The performance of IPM is directly related to the linear solver employed to factorize the Karush–Kuhn–Tucker (KKT) system at each iteration of the algorithm. When solving large-scale nonlinear problems, state-of-the art IPM solvers rely on efficient sparse linear solvers to solve the KKT … Read more

A Globally Convergent Distributed Jacobi Scheme for Block-Structured Nonconvex Constrained Optimization Problems

Motivated by the increasing availability of high-performance parallel computing, we design a distributed parallel algorithm for linearly-coupled block-structured nonconvex constrained optimization problems. Our algorithm performs Jacobi-type proximal updates of the augmented Lagrangian function, requiring only local solutions of separable block nonlinear programming (NLP) problems. We provide a cheap and explicitly computable Lyapunov function that allows … Read more

Upper and Lower Bounds for Large Scale Multistage Stochastic Optimization Problems: Decomposition Methods

We consider a large scale multistage stochastic optimization problem involving multiple units. Each unit is a (small) control system. Static constraints couple units at each stage. To tackle such large scale problems, we propose two decomposition methods, whether handling the coupling constraints by prices or by resources. We introduce the sequence (one per stage) of … Read more

Upper and Lower Bounds for Large Scale Multistage Stochastic Optimization Problems: Application to Microgrid Management

We consider a microgrid where different prosumers exchange energy altogether by the edges of a given network. Each prosumer is located to a node of the network and encompasses energy consumption, energy production and storage capacities (battery, electrical hot water tank). The problem is coupled both in time and in space, so that a direct … Read more

Exact converging bounds for Stochastic Dual Dynamic Programming via Fenchel duality

The Stochastic Dual Dynamic Programming (SDDP) algorithm has become one of the main tools to address convex multistage stochastic optimal control problem. Recently a large amount of work has been devoted to improve the convergence speed of the algorithm through cut-selection and regularization, or to extend the field of applications to non-linear, integer or risk-averse … Read more