A Lagrangean Decomposition Approach for Robust Combinatorial Optimization

We address robust versions of combinatorial optimization problems, specializing on the discrete scenario case and the uncorrelated ellipsoidal uncertainty case. We present a branch and bound-algorithm for the min-max variant of these problems which uses lower bounds obtained from Lagrangean decomposition, allowing to separate the uncertainty aspect in the objective function from the combinatorial structure … Read more

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization

We address robust versions of combinatorial optimization problems, focusing on the uncorrelated ellipsoidal uncertainty case, which corresponds to so-called mean-variance optimization. We present a branch and bound-algorithm for such problems that uses lower bounds obtained from Lagrangean decomposition. This approach allows to separate the uncertainty aspect in the objective function from the combinatorial structure of … Read more

Exact Algorithms for Combinatorial Optimization Problems with Submodular Objective Functions

Many combinatorial optimization problems have natural formulations as submodular minimization problems over well-studied combinatorial structures. A standard approach to these problems is to linearize the objective function by introducing new variables and constraints, yielding an extended formulation. We propose two new approaches for constrained submodular minimization problems. The first is a linearization approach that requires … Read more

Complexity and Exact Solution Approaches to the Minimum Changeover Cost Arborescence Problem

We are given a digraph G = (N, A), where each arc is colored with one among k given colors. We look for a spanning arborescence T of G rooted at a given node and having minimum changeover cost. We call this the Minimum Changeover Cost Arborescence problem. To the authors’ knowledge, it is a … Read more