Lower Bounds for Measurable Chromatic Numbers

The Lov\’asz theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on … Read more

Block-diagonal semidefinite programming hierarchies for 0/1 programming

Lovasz and Schrijver, and later Lasserre, proposed hierarchies of semidefinite programming relaxations for general 0/1 linear programming problems. In this paper these two constructions are revisited and a new, block-diagonal hierarchy is proposed. It has the advantage of being computationally less costly while being at least as strong as the Lovasz-Schrijver hierarchy. It is applied … Read more

Optimality and uniqueness of the (4,10,1/6) spherical code

Traditionally, optimality and uniqueness of an (n,N,t) spherical code is proved using linear programming bounds. However, this approach does not apply to the parameter (4,10,1/6). We use semidefinite programming bounds instead to show that the Petersen code (which are the vertices of the 4-dimensional second hypersimplex or the midpoints of the edges of the regular … Read more

Symmetry in semidefinite programs

This paper is a tutorial in a general and explicit procedure to simplify semidefinite programming problems which are invariant under the action of a group. The procedure is based on basic notions of representation theory of finite groups. As an example we derive the block diagonalization of the Terwilliger algebra in this framework. Here its … Read more

Optimal Embeddings of Distance Regular Graphs into Euclidean Spaces

In this paper we give a lower bound for the least distortion embedding of a distance regular graph into Euclidean space. We use the lower bound for finding the least distortion for Hamming graphs, Johnson graphs, and all strongly regular graphs. Our technique involves semidefinite programming and exploiting the algebra structure of the optimization problem … Read more

Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

In this paper we apply the semidefinite programming approach developed by the authors to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the … Read more

New upper bounds for kissing numbers from semidefinite programming

Recently A. Schrijver derived new upper bounds for binary codes using semidefinite programming. In this paper we adapt this approach to codes on the unit sphere and we compute new upper bounds for the kissing number in several dimensions. In particular our computations give the (known) values for the cases n = 3, 4, 8, … Read more