A Cubic Regularization of Newton’s Method with Finite-Difference Hessian Approximations

In this paper, we present a version of the Cubic Regularization of Newton’s method for unconstrained nonconvex optimization, in which the Hessian matrices are approximated by forward finite difference Hessians. The regularization parameter of the cubic models and the accuracy of the Hessian approximations are jointly adjusted using a nonmonotone line-search criterion. Assuming that the … Read more

Convergence of Quasi-Newton Methods for Solving Constrained Generalized Equations

In this paper, we focus on quasi-Newton methods to solve constrained generalized equations. As is well-known, this problem was firstly studied by Robinson and Josephy in the 70’s. Since then, it has been extensively studied by many other researchers, specially Dontchev and Rockafellar. Here, we propose two Broyden-type quasi-Newton approaches to dealing with constrained generalized … Read more