An extrapolated and provably convergent algorithm for nonlinear matrix decomposition with the ReLU function

Nonlinear matrix decomposition (NMD) with the ReLU function, denoted ReLU-NMD, is the following problem: given a sparse, nonnegative matrix \(X\) and a factorization rank \(r\), identify a rank-\(r\) matrix \(\Theta\) such that \(X\approx \max(0,\Theta)\). This decomposition finds application in data compression, matrix completion with entries missing not at random, and manifold learning. The standard ReLU-NMD … Read more

prunAdag: an adaptive pruning-aware gradient method

A pruning-aware adaptive gradient method is proposed which classifies the variables in two sets before updating them using different strategies. This technique extends the “relevant/irrelevant” approach of Ding (2019) and Zimmer et al. (2022) and allows a posteriori sparsification of the solution of model parameter fitting problems. The new method is proved to be convergent … Read more