Nonsmooth optimization using Taylor-like models: error bounds, convergence, and termination criteria

We consider optimization algorithms that successively minimize simple Taylor-like models of the objective function. Methods of Gauss-Newton type for minimizing the composition of a convex function and a smooth map are common examples. Our main result is an explicit relationship between the step-size of any such algorithm and the slope of the function at a … Read more

Alternating projections and coupling slope

We consider the method of alternating projections for finding a point in the intersection of two possibly nonconvex closed sets. We present a local linear convergence result that makes no regularity assumptions on either set (unlike previous results), while at the same time weakening standard transversal intersection assumptions. The proof grows out of a study … Read more

Quadratic growth and critical point stability of semi-algebraic functions

We show that quadratic growth of a semi-algebraic function is equivalent to strong metric subregularity of the subdifferential — a kind of stability of generalized critical points. In contrast, this equivalence can easily fail outside of the semi-algebraic setting. Citation 13 pages, September, 2013 Article Download View Quadratic growth and critical point stability of semi-algebraic … Read more

Trajectories of Descent

Steepest descent drives both theory and practice of nonsmooth optimization. We study slight relaxations of two influential notions of steepest descent curves — curves of maximal slope and solutions to evolution equations. In particular, we provide a simple proof showing that lower-semicontinuous functions that are locally Lipschitz continuous on their domains — functions playing a … Read more

Clarke subgradients for directionally Lipschitzian stratifiable functions

Using a geometric argument, we show that under a reasonable continuity condition, the Clarke subdifferential of a semi-algebraic (or more generally stratifiable) directionally Lipschitzian function admits a simple form: the normal cone to the domain and limits of gradients generate the entire Clarke subdifferential. The characterization formula we obtain unifies various apparently disparate results that … Read more

The dimension of semialgebraic subdifferential graphs.

Examples exist of extended-real-valued closed functions on $\R^n$ whose subdifferentials (in the standard, limiting sense) have large graphs. By contrast, if such a function is semi-algebraic, then its subdifferential graph must have everywhere constant local dimension $n$. This result is related to a celebrated theorem of Minty, and surprisingly may fail for the Clarke subdifferential. … Read more