A Chance-Constrained Two-Echelon Vehicle Routing Problem with Stochastic Demands

Two-echelon distribution systems are often considered in city logistics to maintain economies of scale and satisfy the emission zone requirements in the cities. In this work, we formulate the two-echelon vehicle routing problem with stochastic demands as a chance-constrained stochastic optimization problem, where the total demand of the customers in each second-echelon route should fit … Read more

The Fuel Replenishment Problem:A Split-Delivery Multi-Compartment Vehicle Routing Problem with Multiple Trips

In this paper, we formally define and model the Fuel Replenishment Problem (FRP). The FRP is a multi-compartment, multi-trip, split-delivery VRP in which tanker trucks transport different types of petrol, separated over multiple vehicle compartments, from an oil depot to petrol stations. Large customer demands often necessitate multiple deliveries. Throughout a single working day, a … Read more

A Scenario-Based Approach for the Vehicle Routing Problem with Roaming Delivery Locations under Stochastic Travel Times

We address a stochastic variant of the Vehicle Routing Problem with Roaming Delivery Locations. In this model, direct-to-consumer deliveries can be made in the trunk of the customer’s car, while the vehicle is parked at a location along the customer’s itinerary. The stochasticity arises from the uncertainty in travel times and the problem is formulated … Read more

Snow Plow Route Optimization: A Constraint Programming Approach

Many cities have to cope with annual snowfall, but are struggling to manage their snow plowing activities efficiently. Despite the fact that winter road maintenance has been the subject of many research papers over the last 3 decades, very few practical decision support systems have been developed to deal with the complex decision problems involved … Read more