Second-Order Cone Relaxations for Binary Quadratic Polynomial Programs

Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, second-order cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, we … Read more

Closed-form solutions to static-arbitrage upper bounds on basket options

We provide a closed-form solution to the problem of computing the sharpest static-arbitrage upper bound on the price of a European basket option, given the prices of vanilla call options in the underlying securities. Unlike previous approaches to this problem, our solution technique is entirely based on linear programming. This also allows us to obtain … Read more

An estimation-free, robust conditional value-at-risk portfolio allocation model

We propose a novel optimization model for risk-averse investors to obtain robust solutions for portfolio allocation problems. Unlike related models in the literature, no historical data or statistical estimation techniques are used to compute the parameters of the model. Instead, the parameters are directly obtained from current prices of options on the assets being considered. … Read more