Biased and unbiased random-key genetic algorithms: An experimental analysis

We study the runtime performance of three types of random-key genetic algorithms: the unbiased algorithm of Bean (1994); the biased algorithm of Gonçalves and Resende (2011); and a greedy version of Bean’s algorithm on 12 instances from four types of covering problems: general-cost set covering, Steiner triple covering, general-cost set K-covering, and unit-cost covering by … Read more

A biased random-key genetic algorithm for a 2D and 3D bin packing problem

We present a novel multi-population biased random-key genetic algorithm (BRKGA) for the 2D and 3D bin packing problem. The approach uses a maximal-space representation to manage the free spaces in the bins. The proposed algorithm uses a decoder based on a novel placement procedure within a multi-population genetic algorithm based on random keys. The BRKGA … Read more

A biased random-key genetic algorithm for job-shop scheduling

This paper presents a local search, based on a new neighborhood for the job-shop scheduling problem, and its application within a biased random-key genetic algorithm. Schedules are constructed by decoding the chromosome supplied by the genetic algorithm with a procedure that generates active schedules. After an initial schedule is obtained, a local search heuristic, based … Read more

A biased random-key genetic algorithm for job-shop scheduling

This paper presents a local search, based on a new neighborhood for the job-shop scheduling problem, and its application within a biased random-key genetic algorithm. Schedules are constructed by decoding the chromosome supplied by the genetic algorithm with a procedure that generates active schedules. After an initial schedule is obtained, a local search heuristic, based … Read more

A biased random-key genetic algorithm for the Steiner triple covering problem

We present a biased random-key genetic algorithm (BRKGA) for finding small covers of computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triple systems. Using a parallel implementation of the BRKGA, we compute improved covers for the two largest instances in a standard set of test problems used … Read more

A parallel multi-population biased random-key genetic algorithm for a container loading problem

This paper presents a multi-population biased random-key genetic algorithm (BRKGA) for the Single Container Loading Problem (CLP) where several rectangular boxes of different sizes are loaded into a single rectangular container. The approach uses a maximal-space representation to manage the free spaces in the container. The proposed algorithm hybridizes a novel placement procedure with a … Read more

Automatic tuning of GRASP with path-relinking heuristics with a biased random-key genetic algorithm

GRASP with path-relinking (GRASP+PR) is a metaheuristic for finding optimal or near-optimal solutions of combinatorial optimization problems. This paper proposes a new automatic parameter tuning procedure for GRASP+PR heuristics based on a biased random-key genetic algorithm (BRKGA). Given a GRASP+PR heuristic with N input parameters, the tuning procedure makes use of a BRKGA in a … Read more

Biased random-key genetic algorithms for combinatorial optimization

Random-key genetic algorithms were introduced by Bean (1994) for solving sequencing problems in combinatorial optimization. Since then, they have been extended to handle a wide class of combinatorial optimization problems. This paper presents a tutorial on the implementation and use of biased random-key genetic algorithms for solving combinatorial optimization problems. Biased random-key genetic algorithms are … Read more

A Biased Random-Key Genetic Algorithm with Forward-Backward Improvement for the Resource Constrained Project Scheduling Problem

This paper presents a biased random-keys genetic algorithm for the Resource Constrained Project Scheduling Problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all … Read more

A multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem

This paper addresses a constrained two-dimensional (2D), non-guillotine restricted, packing problem, where a fixed set of small rectangles has to be packed into a larger stock rectangle so as to maximize the value of the rectangles packed. The algorithm we propose hybridizes a novel placement procedure with a genetic algorithm based on random keys. We … Read more