Accelerated derivative-free spectral residual method for nonlinear systems of equations

Spectral residual methods are powerful tools for solving nonlinear systems of equations without derivatives. In a recent paper, it was shown that an acceleration technique based on the Sequential Secant Method can greatly improve its efficiency and robustness. In the present work, an R implementation of the method is presented. Numerical experiments with a widely … Read more

On the use of third-order models with fourth-order regularization for unconstrained optimization

In a recent paper, it was shown that, for the smooth unconstrained optimization problem, worst-case evaluation complexity $O(\epsilon^{-(p+1)/p})$ may be obtained by means of algorithms that employ sequential approximate minimizations of p-th order Taylor models plus (p + 1)-th order regularization terms. The aforementioned result, which assumes Lipschitz continuity of the p-th partial derivatives, generalizes … Read more

Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models

The evaluation complexity of general nonlinear, possibly nonconvex,constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an $\epsilon$-approximate first-order critical point of the problem can be computed in order $O(\epsilon^{1-2(p+1)/p})$ evaluations of the problem’s function and their first $p$ derivatives. This is achieved by using a two-phases algorithm inspired by Cartis, Gould, … Read more

Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

The worst-case evaluation complexity for smooth (possibly nonconvex) unconstrained optimization is considered. It is shown that, if one is willing to use derivatives of the objective function up to order $p$ (for $p\geq 1$) and to assume Lipschitz continuity of the $p$-th derivative, then an $\epsilon$-approximate first-order critical point can be computed in at most … Read more