Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts

Least squares estimators, when trained on a few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator … Read more

Optimal Scenario Generation for Heavy-tailed Chance Constrained Optimization

We consider a generic class of chance-constrained optimization problems with heavy-tailed (i.e., power-law type) risk factors. In this setting, we use the scenario approach to obtain a constant approximation to the optimal solution with a computational complexity that is uniform in the risk tolerance parameter. We additionally illustrate the efficiency of our algorithm in the … Read more

Confidence Regions in Wasserstein Distributionally Robust Estimation

Wasserstein distributionally robust optimization (DRO) estimators are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance (in a Wasserstein sense) from the underlying empirical measure. While motivated by the need to identify model parameters (or) decision choices that are … Read more

Convergence Rate Analysis of a Stochastic Trust Region Method via Supermartingales

We propose a novel framework for analyzing convergence rates of stochastic optimization algorithms with adaptive step sizes. This framework is based on analysing properties of an underlying generic stochastic process, in particular by deriving a bound on the expected stopping time of this process. We utilise this framework to analyse the bounds on expected global … Read more

Optimal Transport Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes

We consider optimal transport based distributionally robust optimization (DRO) problems with locally strongly convex transport cost functions and affine decision rules. Under conventional convexity assumptions on the underlying loss function, we obtain structural results about the value function, the optimal policy, and the worst-case optimal transport adversarial model. These results expose a rich structure embedded … Read more