Modified Orbital Branching with Applications to Orbitopes and to Unit Commitment

The past decade has seen advances in general methods for symmetry breaking in mixed-integer linear programming. These methods are advantageous for general problems with general symmetry groups. Some important classes of MILP problems, such as bin packing and graph coloring, contain highly structured symmetry groups. This observation has motivated the development of problem-specific techniques. In … Read more

Using Symmetry to Optimize Over the Sherali-Adams Relaxation

In this paper we examine the impact of using the Sherali-Adams procedure on highly symmetric integer programming problems. Linear relaxations of the extended formulations generated by Sherali-Adams can be very large, containing on the order of n choose d many variables for the level-d closure. When large amounts of symmetry are present in the problem … Read more

On the generation of symmetry breaking constraints for mathematical programs

Mathematical programs whose formulation is symmetric often take a long time to solve using Branch-and-Bound type algorithms, because of the several symmetric optima. One of the techniques used to decrease the adverse effects of symmetry is adjoining symmetry breaking constraints to the formulation before solving the problem. These constraints aim to make some of the … Read more

Symmetry in Scheduling Problems

The presence of symmetry is common in certain types of scheduling problems. Symmetry can occur when one is scheduling a collection of jobs on multiple identical machines, or if one is determining production schedules for identical machines. General symmetry-breaking methods can be strengthened by taking advantage of the special structure of the symmetry group in … Read more

Solving Large Steiner Triple Covering Problems

Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to small set covering instances that provide a computational challenge for integer programming techniques. One major source of difficulty for instances of this family is their highly symmetric structure, which impairs the performance of most branch-and-bound algorithms. The largest instance in … Read more

Constraint Orbital Branching

Orbital branching is a method for branching on variables in integer programming that reduces the likelihood of evaluating redundant, isomorphic nodes in the branch-and-bound procedure. In this work, the orbital branching methodology is extended so that the branching disjunction can be based on an arbitrary constraint. Many important families of integer programs are structured such … Read more

Orbital Branching

We introduce orbital branching, an effective branching method for integer programs containing a great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect to the symmetry remaining in the problem after branching, including symmetry which is not present at the root node. These groups of equivalent variables, … Read more