On the B-differential of the componentwise minimum of two affine vector functions

This paper focuses on the description and computation of the B-differential of the componentwise minimum of two affine vector functions. This issue arises in the reformulation of the linear complementarity problem with the Min C-function. The question has many equivalent formulations and we identify some of them in linear algebra, convex analysis and discrete geometry. … Read more

Orbital Crossover

Symmetry in optimization has been known to wreak havoc in optimization algorithms. Often, some of the hardest instances are highly symmetric. This is not the case in linear programming, as symmetry allows one to reduce the size of the problem, possibly dramatically, while still maintaining the same optimal objective value. This is done by aggregating … Read more

A Unified Framework for Symmetry Handling

Handling symmetries in optimization problems is essential for devising efficient solution methods. In this article, we present a general framework that captures many of the already existing symmetry handling methods. While these methods are mostly discussed independently from each other, our framework allows to apply different methods simultaneously and thus outperforming their individual effect. Moreover, … Read more

Optimizing hypergraph-based polynomials modeling job-occupancy in queueing with redundancy scheduling

We investigate two classes of multivariate polynomials with variables indexed by the edges of a uniform hypergraph and coefficients depending on certain patterns of union of edges. These polynomials arise naturally to model job-occupancy in some queuing problems with redundancy scheduling policy. The question, posed by Cardinaels, Borstand van Leeuwaarden (arXiv:2005.14566, 2020), is to decide … Read more

Generalized conditional subgradient and generalized mirror descent: duality, convergence, and symmetry

We provide new insight into a generalized conditional subgradient algorithm and a generalized mirror descent algorithm for the convex minimization problem \[\min_x \; \{f(Ax) + h(x)\}.\] As Bach showed in [SIAM J. Optim., 25 (2015), pp. 115–129], applying either of these two algorithms to this problem is equivalent to applying the other one to its … Read more

Exploiting Identical Generators in Unit Commitment

We present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in … Read more

Extended Formulations for Column Constrained Orbitopes

In the literature, packing and partitioning orbitopes were discussed to handle symmetries that act on variable matrices in certain binary programs. In this paper, we extend this concept by restrictions on the number of 1-entries in each column. We develop extended formulations of the resulting polytopes and present numerical results that show their effect on … Read more

Packing, Partitioning, and Covering Symresacks

In this paper, we consider symmetric binary programs that contain set packing, partitioning, or covering inequalities. To handle symmetries as well as set packing, partitioning, or covering constraints simultaneously, we introduce constrained symresacks which are the convex hull of all binary points that are lexicographically not smaller than their image w.r.t. a coordinate permutation and … Read more

Polytopes Associated with Symmetry Handling

This paper investigates a polyhedral approach to handle symmetries in mixed-binary programs. We study symretopes, i.e., the convex hulls of all binary vectors that are lexicographically maximal in their orbit with respect to the symmetry group. These polytopes turn out to be quite complex. For practical use, we therefore develop an integer programming formulation with … Read more

A Computational Comparison of Symmetry Handling Methods for Mixed Integer Programs

The handling of symmetries in mixed integer programs in order to speed up the solution process of branch-and-cut solvers has recently received significant attention, both in theory and practice. This paper compares different methods for handling symmetries using a common implementation framework. We start by investigating the computation of symmetries and analyze the symmetries present … Read more