Bi-objective Simulation Optimization on Integer Lattices using the Epsilon-Constraint Method in a Retrospective Approximation Framework

We consider multi-objective simulation optimization (MOSO) problems on integer lattices, that is, nonlinear optimization problems in which multiple simultaneous objective functions can only be observed with stochastic error, e.g., as output from a Monte Carlo simulation model. The solution to a MOSO problem is the efficient set, which is the set of all feasible decision … Read more

Stochastically Constrained Simulation Optimization On Integer-Ordered Spaces: The cgR-SPLINE Algorithm

We consider the problem of identifying the solution(s) to an optimization problem whose domain is a subset of the integer lattice, and whose objective and constraint functions can only be observed using a stochastic simulation. Such problems seem particularly prevalent (see www.simopt.org) within service systems having capacity or service-level constraints. We present cgR-SPLINE — a … Read more