Robust Metric Inequalities for the Γ-Robust Network Loading Problem

In this paper, we consider the network loading problem under demand uncertainties with static routing, i.e, a single routing scheme based on the fraction of the demands has to be determined. We generalize the class of metric inequalities to the Γ-robust setting and show that they yield a formulation in the capacity space. We describe … Read more

Robust Network Design: Formulations, Valid Inequalities, and Computations

Traffic in communication networks fluctuates heavily over time. Thus, to avoid capacity bottlenecks, operators highly overestimate the traffic volume during network planning. In this paper we consider telecommunication network design under traffic uncertainty, adapting the robust optimization approach of Bertsimas and Sim (2004). We present three different mathematical formulations for this problem, provide valid inequalities, … Read more

Designing AC Power Grids using Integer Linear Programming

Recent developments have drawn focus towards the efficient calculation of flows in AC power grids, which are difficult to solve systems of nonlinear equations. The common linearization approach leads to the well known and often used DC formulation, which has some major drawbacks. To overcome these drawbacks we revisit an alternative linearization of the AC … Read more

A Chance-Constrained Model & Cutting Planes for Fixed Broadband Wireless Networks

In this paper, we propose a chance-constrained mathematical program for fixed broadband wireless networks under unreliable channel conditions. The model is reformulated as integer linear program and valid inequalities are derived for the corresponding polytope. Computational results show that by an exact separation approach the optimality gap is closed by 42 % on average. Article … Read more

Planning Wireless Networks with Demand Uncertainty using Robust Optimization

An optimal planning of future wireless networks is fundamental to satisfy rising traffic demands jointly with the utilization of sophisticated techniques, such as OFDMA. Current methods for this task require a static model of the problem. However, uncertainty of data arises frequently in wireless networks, e. g., fluctuat- ing bit rate requirements. In this paper, … Read more

Recoverable Robust Knapsack: the Discrete Scenario Case

Admission control problems have been studied extensively in the past. In a typical setting, resources like bandwidth have to be distributed to the different customers according to their demands maximizing the profit of the company. Yet, in real-world applications those demands are deviating and in order to satisfy their service requirements often a robust approach … Read more

Recoverable Robust Knapsacks: $\GammahBcScenarios

In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty of the item weights follows the approach of Bertsimas and Sim (2003,2004). In contrast to the robust approach, a limited recovery action is allowed, i.e., upto k items may be removed when the actual weights are known. This problem is motivated by … Read more

Single-layer Cuts for Multi-layer Network Design Problems

We study a planning problem arising in SDH/WDM multi-layer telecommunication network design. The goal is to find a minimum cost installation of link and node hardware of both network layers such that traffic demands can be realized via grooming and a survivable routing. We present a mixed-integer programming formulation that takes many practical side constraints … Read more

Algorithms to Separate {0,1/2}-Chvatal-Gomory Cuts

Chvatal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or 1/2, such cuts are known as {0, 1/2}-cuts. It has been proven by Caprara and Fischetti (1996) that separation of {0, 1/2}-cuts is NP-hard. In this paper, we study … Read more

On the strength of cut-based inequalities for capacitated network design polyhedra

In this paper we study capacitated network design problems, differentiating directed, bidirected and undirected link capacity models. We complement existing polyhedral results for the three variants by new classes of facet-defining valid inequalities and unified lifting results. For this, we study the restriction of the problems to a cut of the network. First, we show … Read more