A successive centralized circumcentered-reflection method for the convex feasibility problem

In this paper, we present a successive centralization process for the circumcentered-reflection scheme with several control sequences for solving the convex feasibility problem in Euclidean space. Assuming that a standard error bound holds, we prove the linear convergence of the method with the most violated constraint control sequence. Moreover, under additional smoothness assumptions on the … Read more

Towards an efficient Augmented Lagrangian method for convex quadratic programming

Interior point methods have attracted most of the attention in the recent decades for solving large scale convex quadratic programming problems. In this paper we take a different route as we present an augmented Lagrangian method for convex quadratic programming based on recent developments for nonlinear programming. In our approach, box constraints are penalized while … Read more

Optimized choice of parameters in interior-point methods for linear programming

In this work, we propose a predictor-corrector interior point method for linear programming in a primal-dual context, where the next iterate is chosen by the minimization of a polynomial merit function of three variables: the first is the steplength, the second defines the central path and the third models the weight of a corrector direction. … Read more

Perprof-py: a Python package for performance profile of mathematical optimization software

A very important part of research in Mathematical Optimization field is to benchmark optimization packages because it is one of the ways to compare solvers. During benchmarking, one usually obtains a large amount of information, like CPU time, number of functions evaluations, number of iterations and much more. This information, if presented as tables, can … Read more