Stability analysis of parameterized models relative to nonconvex constraints

For solution mappings of parameterized models (such as optimization problems, variational inequalities, and generalized equations), standard stability inevitably fails as the parameter approaches the boundary of the feasible domain. One remedy is relative stability restricted to a constraint set (e.g., the feasible domain), which is our focus in this paper. We establish generalized differentiation criteria … Read more

Newtonian Methods with Wolfe Linesearch in Nonsmooth Optimization and Machine Learning

This paper introduces and develops coderivative-based Newton methods with Wolfe linesearch conditions to solve various classes of problems in nonsmooth optimization and machine learning. We first propose a generalized regularized Newton method with Wolfe linesearch (GRNM-W) for unconstrained $C^{1,1}$ minimization problems (which are second-order nonsmooth) and establish global as well as local superlinear convergence of … Read more

A descent method for nonsmooth multiobjective optimization problems on Riemannian manifolds

In this paper, a descent method for nonsmooth multiobjective optimization problems on complete Riemannian manifolds is proposed. The objective functions are only assumed to be locally Lipschitz continuous instead of convexity used in existing methods. A necessary condition for Pareto optimality in Euclidean space is generalized to the Riemannian setting. At every iteration, an acceptable … Read more