On solving large-scale multistage stochastic problems with a new specialized interior-point approach

A novel approach based on a specialized interior-point method (IPM) is presented for solving large-scale stochastic multistage continuous optimization problems, which represent the uncertainty in strategic multistage and operational two-stage scenario trees, the latter being rooted at the strategic nodes. This new solution approach considers a split-variable formulation of the strategic and operational structures, for … Read more

On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty

This study focuses on the development of a mixed binary primal-dual bilinear model for multi-period bilevel network expansion planning under uncertainty, where pricing-based equilibrated strategic and operational decisions are to be made. The periodwise dependent parameters’ uncertainty is represented by a _nite set of scenarios. Pricing-based equilibrium is required in the models to be optimized … Read more

Rank aggregation in cyclic sequences

In this paper we propose the problem of finding the cyclic sequence which best represents a set of cyclic sequences. Given a set of elements and a precedence cost matrix we look for the cyclic sequence of the elements which is at minimum distance from all the ranks when the permutation metric distance is the … Read more

An SDP approach for multiperiod mixed 0–1 linear programming models with stochastic dominance constraints for risk management

In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multistage case and includes both first-order and second-order constraints. We propose a stochastic … Read more

Expected Future Value Decomposition Based Bid Price Generation for Large-Scale Network Revenue Management

This paper studies a multi-stage stochastic programming model for large-scale network revenue management. We solve the model by means of the so-called Expected Future Value (EFV) decomposition via scenario analysis, estimating the impact of the decisions made at a given stage on the objective function value related to the future stages. The EFV curves are … Read more