Distributionally Robust Disaster Relief Planning under the Wasserstein Set

We study a two-stage natural disaster management problem modeled as a stochastic program, where the first stage consists of a facility location problem, deciding where to open facilities and pre-allocate resources such as medical and food kits, and the second stage is a fixed-charge transportation problem, routing resources to affected areas after observing a disaster. … Read more

Multi-criteria Course Mode Selection and Classroom Assignment Under Sudden Space Scarcity

Problem Definition: While physical (or ‘social’) distancing is an important public health intervention during airborne pandemics, physical distancing dramatically reduces the effective capacity of classrooms. During the COVID-19 pandemic, this presented a unique problem to campus planners who hoped to deliver a meaningful amount of in-person instruction in a way that respected physical distancing. This … Read more

Data-Driven Two-Stage Conic Optimization with Zero-One Uncertainties

We address high-dimensional zero-one random parameters in two-stage convex conic optimization problems. Such parameters typically represent failures of network elements and constitute rare, high-impact random events in several applications. Given a sparse training dataset of the parameters, we motivate and study a distributionally robust formulation of the problem using a Wasserstein ambiguity set centered at … Read more

Consensus-Based Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition (DWD) is a classical algorithm for solving large-scale linear programs whose constraint matrix involves a set of independent blocks coupled with a set of linking rows. The algorithm decomposes such a model into a master problem and a set of independent subproblems that can be solved in a distributed manner. In a typical … Read more