Adaptive Two-stage Stochastic Programming with an Application to Capacity Expansion Planning

Multi-stage stochastic programming is a well-established framework for sequential decision making under uncertainty by seeking policies that are fully adapted to the uncertainty. Often, e.g. due to contractual constraints, such flexible and adaptive policies are not desirable, and the decision maker may need to commit to a set of actions for a certain number of … Read more

Data-Driven Maintenance and Operations Scheduling in Power Systems under Decision-Dependent Uncertainty

Generator maintenance scheduling plays a pivotal role in ensuring uncompromising operations of power systems. There exists a tight coupling between the condition of the generators and corresponding operational schedules, significantly affecting reliability of the system. In this study, we effectively model and solve an integrated condition-based maintenance and operations scheduling problem for a fleet of … Read more

Leveraging Predictive Analytics to Control and Coordinate Operations, Asset Loading and Maintenance

This paper aims to advance decision-making in power systems by proposing an integrated framework that combines sensor data analytics and optimization. Our modeling framework consists of two components: (1) a predictive analytics methodology that uses real-time sensor data to predict future degradation and remaining lifetime of generators as a function of the loading conditions, and … Read more

Integrated Generator Maintenance and Operations Scheduling under Uncertain Failure Times

Planning maintenances and operations is an important concern in power systems. Although optimization based joint maintenance and operations scheduling is studied in the literature, sudden disruptions due to random generator failures are not considered. In this paper we propose a stochastic mixed-integer programming approach for integrated condition-based maintenance and operations scheduling problem for a fleet … Read more