A Trilevel Model for Segmentation of the Power Transmission Grid Cyber Network

Network segmentation of a power grid’s communication system is one way to make the grid more resilient to cyber attacks. We develop a novel trilevel programming model to optimally segment a grid communication system, taking into account the actions of an information technolology (IT) administrator, attacker, and grid operator. The IT administrator is given an … Read more

Mixed-integer Linear Programming Models and Algorithms for Generation and Transmission Expansion Planning of Power Systems

With the increasing penetration of renewable generating units, especially in remote areas not well connected with load demand, there are growing interests to co-optimize generation and transmission expansion planning (GTEP) in power systems. Due to the volatility in renewable generation, a planner needs to include the operating decisions into the planning model to guarantee feasibility. … Read more

CONICOPF: Conic relaxations for AC optimal power flow computations

Computational speed and global optimality are key needs for practical algorithms for the optimal power flow problem. Two convex relaxations offer a favorable trade-off between the standard second-order cone and the standard semidefinite relaxations for large-scale meshed networks in terms of optimality gap and computation time: the tight-and-cheap relaxation (TCR) and the quadratic convex relaxation … Read more

Data-Driven Maintenance and Operations Scheduling in Power Systems under Decision-Dependent Uncertainty

Generator maintenance scheduling plays a pivotal role in ensuring uncompromising operations of power systems. There exists a tight coupling between the condition of the generators and corresponding operational schedules, significantly affecting reliability of the system. In this study, we effectively model and solve an integrated condition-based maintenance and operations scheduling problem for a fleet of … Read more

Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem

The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimization problem and its complexity is increased compared to the ACOPF problem, … Read more

Tight-and-cheap conic relaxation for the AC optimal power flow problem

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite, second-order cone, convex quadratic, and linear relaxations, have recently attracted significant interest. The semidefinite relaxation is the strongest among them and is exact for many cases. However, the computational efficiency for solving large-scale semidefinite … Read more

A Cycle-Based Formulation and Valid Inequalities for DC Power Transmission Problems with Switching

It is well-known that optimizing network topology by switching on and off transmission lines improves the efficiency of power delivery in electrical networks. In fact, the USA Energy Policy Act of 2005 (Section 1223) states that the U.S. should “encourage, as appropriate, the deployment of advanced transmission technologies” including “optimized transmission line configurations”. As such, … Read more

New Versions of Interior Point Methods Applied to the Optimal Power Flow Problem

Interior Point methods for Nonlinear Programming have been extensively used to solve the Optimal Power Flow problem. These optimization algorithms require the solution of a set of nonlinear equations to obtain the optimal solution of the power network equations. During the iterative process to solve these equations, the search for the optimum is based on … Read more