Computing Tchebychev weight space decomposition for multiobjective discrete optimization problems

Multiobjective discrete optimization (MODO) techniques, including weight space decomposition, have received increasing attention in the last decade. The primary weight space decomposition technique in the literature is defined for the weighted sum utility function, through which sets of weights are assigned to a subset of the nondominated set. Recent work has begun to study the … Read more

A Fast and Robust Algorithm for Solving Biobjective Mixed Integer Programs

We present a fast and robust algorithm for solving biobjective mixed integer programs. The algorithm extends and merges ideas from two existing methods: the Boxed Line Method and the epsilon-Tabu Method. We demonstrate its efficacy in an extensive computational study. We also demonstrate that it is capable of producing a high-quality approximation of the nondominated … Read more

A Criterion Space Search Algorithm for Biobjective Mixed Integer Programming: the Boxed Line Method

Despite recent interest in multiobjective integer programming, few algorithms exist for solving biobjective mixed integer programs. We present such an algorithm: the Boxed Line Method. For one of its variants, we prove that the number of single-objective integer programs solved is bounded by a linear function of the number of nondominated line segments in the … Read more