Self-concordant inclusions: A unified framework for path-following generalized Newton-type algorithms

We study a class of monotone inclusions called “self-concordant inclusion” which covers three fundamental convex optimization formulations as special cases. We develop a new generalized Newton-type framework to solve this inclusion. Our framework subsumes three schemes: full-step, damped-step and path-following methods as specific instances, while allows one to use inexact computation to form generalized Newton … Read more

Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities

Stochastic variational inequalities (SVI) model a large class of equilibrium problems subject to data uncertainty, and are closely related to stochastic optimization problems. The SVI solution is usually estimated by a solution to a sample average approximation (SAA) problem. This paper considers the normal map formulation of an SVI, and proposes a method to build … Read more

Individual confidence intervals for true solutions to stochastic variational inequalities

Stochastic variational inequalities (SVI) provide a means for modeling various optimization and equilibrium problems where data are subject to uncertainty. Often it is necessary to estimate the true SVI solution by the solution of a sample average approximation (SAA) problem. This paper proposes three methods for building confidence intervals for components of the true solution, … Read more